Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.

Identifieur interne : 000D01 ( Main/Exploration ); précédent : 000D00; suivant : 000D02

Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.

Auteurs : Laure Michelet [France] ; Mirko Zaffagnini ; Vincent Massot ; Eliane Keryer ; Hélène Vanacker ; Myroslawa Miginiac-Maslow ; Emmanuelle Issakidis-Bourguet ; Stéphane D. Lemaire

Source :

RBID : pubmed:17089213

Descripteurs français

English descriptors

Abstract

Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.

DOI: 10.1007/s11120-006-9096-2
PubMed: 17089213


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.</title>
<author>
<name sortKey="Michelet, Laure" sort="Michelet, Laure" uniqKey="Michelet L" first="Laure" last="Michelet">Laure Michelet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</author>
<author>
<name sortKey="Massot, Vincent" sort="Massot, Vincent" uniqKey="Massot V" first="Vincent" last="Massot">Vincent Massot</name>
</author>
<author>
<name sortKey="Keryer, Eliane" sort="Keryer, Eliane" uniqKey="Keryer E" first="Eliane" last="Keryer">Eliane Keryer</name>
</author>
<author>
<name sortKey="Vanacker, Helene" sort="Vanacker, Helene" uniqKey="Vanacker H" first="Hélène" last="Vanacker">Hélène Vanacker</name>
</author>
<author>
<name sortKey="Miginiac Maslow, Myroslawa" sort="Miginiac Maslow, Myroslawa" uniqKey="Miginiac Maslow M" first="Myroslawa" last="Miginiac-Maslow">Myroslawa Miginiac-Maslow</name>
</author>
<author>
<name sortKey="Issakidis Bourguet, Emmanuelle" sort="Issakidis Bourguet, Emmanuelle" uniqKey="Issakidis Bourguet E" first="Emmanuelle" last="Issakidis-Bourguet">Emmanuelle Issakidis-Bourguet</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:17089213</idno>
<idno type="pmid">17089213</idno>
<idno type="doi">10.1007/s11120-006-9096-2</idno>
<idno type="wicri:Area/Main/Corpus">000D01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D01</idno>
<idno type="wicri:Area/Main/Curation">000D01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D01</idno>
<idno type="wicri:Area/Main/Exploration">000D01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.</title>
<author>
<name sortKey="Michelet, Laure" sort="Michelet, Laure" uniqKey="Michelet L" first="Laure" last="Michelet">Laure Michelet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</author>
<author>
<name sortKey="Massot, Vincent" sort="Massot, Vincent" uniqKey="Massot V" first="Vincent" last="Massot">Vincent Massot</name>
</author>
<author>
<name sortKey="Keryer, Eliane" sort="Keryer, Eliane" uniqKey="Keryer E" first="Eliane" last="Keryer">Eliane Keryer</name>
</author>
<author>
<name sortKey="Vanacker, Helene" sort="Vanacker, Helene" uniqKey="Vanacker H" first="Hélène" last="Vanacker">Hélène Vanacker</name>
</author>
<author>
<name sortKey="Miginiac Maslow, Myroslawa" sort="Miginiac Maslow, Myroslawa" uniqKey="Miginiac Maslow M" first="Myroslawa" last="Miginiac-Maslow">Myroslawa Miginiac-Maslow</name>
</author>
<author>
<name sortKey="Issakidis Bourguet, Emmanuelle" sort="Issakidis Bourguet, Emmanuelle" uniqKey="Issakidis Bourguet E" first="Emmanuelle" last="Issakidis-Bourguet">Emmanuelle Issakidis-Bourguet</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
</analytic>
<series>
<title level="j">Photosynthesis research</title>
<idno type="ISSN">0166-8595</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutaredoxins (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Thioredoxins (chemistry)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glutarédoxines (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Thiorédoxines (composition chimique)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oxidoreductases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxidoreductases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxidoreductases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17089213</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0166-8595</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>89</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Photosynthesis research</Title>
<ISOAbbreviation>Photosynth Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.</ArticleTitle>
<Pagination>
<MedlinePgn>225-45</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Michelet</LastName>
<ForeName>Laure</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zaffagnini</LastName>
<ForeName>Mirko</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Massot</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keryer</LastName>
<ForeName>Eliane</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vanacker</LastName>
<ForeName>Hélène</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miginiac-Maslow</LastName>
<ForeName>Myroslawa</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Issakidis-Bourguet</LastName>
<ForeName>Emmanuelle</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lemaire</LastName>
<ForeName>Stéphane D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>11</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Photosynth Res</MedlineTA>
<NlmUniqueID>100954728</NlmUniqueID>
<ISSNLinking>0166-8595</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>235</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17089213</ArticleId>
<ArticleId IdType="doi">10.1007/s11120-006-9096-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Apr 6;43(13):4028-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15049710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:93-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7740-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jan;45(1):18-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jan;8(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12523998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):964-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2004 Jun;78(6):1085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Sep 12;39(36):11121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Apr;17 (2):183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 2;274(14):9427-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 15;38(12):1543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30859-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jul 13;1432(2):159-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10407139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 28;274(22):15857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 10;272(41):25935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):980-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Jun;42(6):673-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11427688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Nov;46(11):1757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2003 Feb;24(2):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13945-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Nov 15;35(10):1185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Feb;6(3):817-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16372262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2005 May;39(5):471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16036322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;82(3):203-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 22;277(12):9806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11777920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;359:268-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Oct 7;269(40):25010-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Mar;77(5):3319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Feb 20;35(7):2482-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8652592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2005 May 1;95(1):45-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15770658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jan;216(3):454-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2004;44:325-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):940-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):919-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11538180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Jul 21;274(1):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10903915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 Jul 15;349(Pt 2):567-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jun;65(11):1629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15276458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2003 Jul;3(7):1154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12872216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1994 Apr;310(1):273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8161216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 1;38(11):1413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;73(1-3):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Sep;4(9):2696-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15352244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):564-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Jul;44(7):655-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):743-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 3;109(3):383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11274350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jan;269(1):272-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11784321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1983 Sep 1;32(17):2529-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6615548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 26;291(5504):643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 4;280(5):3125-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;251:8-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Nov 1;335(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997;202(3):349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9232906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):849-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 12;306(5699):1183-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 13;275(41):31641-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10906327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1981 Oct 15;211(2):632-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6272648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 1;38(11):1501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2002 Oct 15;406(2):229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12361711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):305-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 20;278(25):22492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 19;274(12):7695-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10075658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 26;427(6977):858-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(4):1116-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Feb 6;314(2):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14733943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Apr 25;787(2):405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 13;100(10):5634-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(2):127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1785-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2002 Nov;973:529-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12485922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 May 1;347 Pt 3:821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 18;38(20):6699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Jan;62(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 8;410(6825):220-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 1999 Oct;31(4):357-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 May 1;315 ( Pt 3):931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8645179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;353:89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12078531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;143:264-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3657543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 20;278(25):22325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2005 Feb;125(2):127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Feb;39(3):533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:187-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Apr;19(4):2650-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10082531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Winter;2(4):811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11213485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1990;63:69-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2407068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jan;45(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Jan 10;337(2):157-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8287970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 May;269(9):2414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Jul 17;547(1-3):151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12860404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1998 Apr 24;111-112:177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9679553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 May 31;44(21):7696-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15909984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2002 Sep;64(5-6):1049-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1995;195(3):456-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 14;277(24):21189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11925435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 May;42(5):524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11382819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Aug 22;39(33):10319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10956021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 22;278(34):31848-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):435-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16315075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Sep;8(9):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8837514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 May 1;221(3):1033-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8181459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Apr 15;42(14):4235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12680778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2004 Apr;42(4):265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15120110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Dec 27;271(52):33539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8969219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2002 Sep;64(5-6):1065-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2005 Jun;39(6):573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16036334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Feb 1;362(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9917330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1672-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8127864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jul 20;310(4):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11453697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Mar 1;378(Pt 2):497-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 10;277(19):16712-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1439-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 25;300(5619):650-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12714747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2002 Oct 1;33(7):894-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12361801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Proteomics. 2004 Oct;1(3):365-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15966832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Jun 6;305(3):709-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12763051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:371-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 May 22;543(1-3):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 7;272(45):28218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Apr 2;21(7):1695-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Sep 1;374(Pt 2):513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12755685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1982 Apr 15;31(8):1637-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7092955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):43505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 5;275(18):13398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10788450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2001 Jan 30;130-132(1-3):597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11306078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 25;278(17):14607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Apr;132(7):1555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 8;44(44):14528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3312-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:169-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11536727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Jan 5;38(1):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9890907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Nov 29;240(2):307-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10580150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 4;45(26):7998-8008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16800625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1980 Jul 15;190(1):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7447929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1999 Sep;13(12):1481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10463938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 2;273(1):392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9417094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 16;276(7):4564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1993;62:797-821</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8352601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4170-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8633035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Aug 15;332(2):288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11584-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9751709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Apr;5(6):1634-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15765494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 May 10;319(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7771771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3759-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 2;22(11):2623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 20;38(16):5200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1994 Apr;58(4):491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1984;107:330-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6239077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jul 9;274(28):19714-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10391912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Sep 24;274(39):27891-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10488136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1378-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 Nov 15;359(2):170-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98 (20):11224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837918</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<orgName>
<li>Université Paris-Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Issakidis Bourguet, Emmanuelle" sort="Issakidis Bourguet, Emmanuelle" uniqKey="Issakidis Bourguet E" first="Emmanuelle" last="Issakidis-Bourguet">Emmanuelle Issakidis-Bourguet</name>
<name sortKey="Keryer, Eliane" sort="Keryer, Eliane" uniqKey="Keryer E" first="Eliane" last="Keryer">Eliane Keryer</name>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
<name sortKey="Massot, Vincent" sort="Massot, Vincent" uniqKey="Massot V" first="Vincent" last="Massot">Vincent Massot</name>
<name sortKey="Miginiac Maslow, Myroslawa" sort="Miginiac Maslow, Myroslawa" uniqKey="Miginiac Maslow M" first="Myroslawa" last="Miginiac-Maslow">Myroslawa Miginiac-Maslow</name>
<name sortKey="Vanacker, Helene" sort="Vanacker, Helene" uniqKey="Vanacker H" first="Hélène" last="Vanacker">Hélène Vanacker</name>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Michelet, Laure" sort="Michelet, Laure" uniqKey="Michelet L" first="Laure" last="Michelet">Laure Michelet</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17089213
   |texte=   Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17089213" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020